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THE EQUATIONS OF MOTION OF A NON-HOLONOMIC SYSTEM WITH A
NON-RETAINING CONSTRAINT *

A.P. IVANOV

The regularity of the equations of motion of a system with a perfect non-
retaining constraint ¢, >0 and with differential constraints is demonstrated.
As regards the latter it is assumed that they are imposed either on all
motions of the system or only on those for which g =0, The effect of
impacts on the stability of permanent rotation of a heavy solid about its
axis of symmetry above an absolutely rough surface is investigated, It is
shown that the stability of rotation of a sclid on the surface can be
destabilized by tearing away to an arbitary height, as small as desired.

The possibility of deriving the equations of motion in regular form
which defines the meotion of a holonomic system with non-retaining constraint
in an arbitrary time interval was showing earlier /1/. The advantages of
this approach in comparison with the traditional method of "fitting" were
demonstrated in /2-4/.

1. suppose we are given a mechanical system M, defined in the configuration space g = R"
by generalized forces @ and the kinetic energy T, which is a quadratic form in q. The motion
of the system is restrained by a nen-retaining constraint ¢, >0, and by m < n differentiable

constraints of the form
ci=a,q =0, ¢;=a(q. )= R" (i=1,,..,m) .1

We shall consider two types of differentiable constraints, assuming that only those motions
for which ¢, = 0, and for { = m, =~ ... .. m allmotions of system M, obey relations (1.1).

If the coordinate g, vanishes when { = {* an impact occurs on the non-retaining
constraint, as well as the differential constraints of the first type. According to Newton's
hypothesis that impact (considered absolutely elastic) can be definedby the relations

g (F == 0) = —q (* =), 6 (t* +0) = —c; (1* —0) (1.2
G=1. ..., ny

We describe the motion free of impacts by the Boltzmann~Hamel Egs./5/. If the quasico-
ordinates a are defined by a reversible substitution

1, =1q) Tm == L{g = /Y 1.3
(i=1 ... n—mj=1...,m)
these equations have in region g, > 0 the form
d of ol ér . . .
T =T, A =0 1.4
dt da o1, = 'Svoaa L I, 4 (1.4)

'

fe=1. ..., n—m=+my; r=n—m-=m =1, ... n)

where the kinetic energy T is set up taking relations (1.3} into account, [I; is the generalized
force corresponding to the gquasicoordinate n, and the coefficients of non-holonomy y are
determined from the permutational relations
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{ffé — éﬁg) Ty = Yigs éi’{géﬂ; {5{5 =4, ., n} -{i,f}}

In formulae {1.4) and {1.5) the zummation signs over the indices i, i are omitted,

The motions of system ¥ for which g,==0 may also be described using Egs. {1.4) in which
the active forces acting on the system must be supplemented by the reaction of a non~retaining
constraint, and the indices must be changed in the limits s=14, .., n—mr=n—m B2 N

To formalize the impact interactions it is convenient to set

oy = gy, !‘!; = 5??@?; {i = 21 ey R m} {LS}

in {1.3}, where 7' is the kinetic emergy whose composition must take into account the second
group of relations {1.3). The quasivelogities after the impact are then determined by
conditions (1.2), and the property of gontinuity zm; {i == 2, ..., n—m) proved in /6/. ‘These
values may be considered as the initial copditions for system (1.4) that determines the
motions in the time interval to the second impact, and so forth. Obtaining such conclusions
on the properties of motion in an infinite time interval is, however, difficult using this
method, called the method of fitting, due to the lack of a priori information on the instants
of impact.

The other method of investigation iz to describe the system ¥ using some ancilliary
system M* not subject to impacts. The advantages of this approach were demonstrated in /1-4/
for holonomic systems. A development of this method for systems with constraints of the form
{(1.1) is proposed below,

The motion of system M* will be described in the phase space (g*, x*') by setting the
sorrespondence betwesn the trajectories of M and M* using relations.

g=la*h @=eth .o G=g* & =al mnat) %)
1 When§""-~"’“iy Bow—m o+ is:;aaﬂ“?ﬂ»‘%‘fﬁi
¥i®™=1 0 otherwise

Theorem. In phase space the trajectories {1.7) are defined by the system of sguations

4 ar*  art R LA
&t aﬂ:v 63"‘ "{"’Y&u"’;;;?‘."‘"ng —H; ER = {28}
s=4, ..., n—mbmyr=n-—m-m-+1 ..., 0

Yh=s g (sgn o), LY =T (sgn g™

where 7% is the kinetic energy in Egs. (1.4} in which expressions (1.7} are substituted For

-

q. 1 .

Lowma.  bet N o= YedeT be a non-degenerate quadratic form, whers a = (&, ..., &} The
varsables § are connected with @ by the relations

B, = 0Nty o=@ty [r=1, .., ms=m<+1, .., 0
in which in the expression N = Y, BBAY there are no products of different groups: &, = 0

Proof of the lemma. We divide matrix A into blocks, separating m of its rows and »
columns

A"’F As M

ji
a AT AT

We will represent the velation between & and  in the form

&y Ax
» o Lag L::% 8 E g
where E is the unit matriz of order n-=m.
For matrix B we obtain

B LT ALY m AT (B A, — A,TACTA)
from which the above statement follows.

Proof of the theorem. By the lemms, the kinetiv energy T* decomposes into the sum of
two quadratic forms, each of which corresponds to a definite value of v, calculated for
the indices of the variables appearing in it. Hence the factors sgng* will not appear in
I*, and system (1.8} will not contain singularities of the delta-function type. Conseguently,
the solutions of this system are represgnted by continuous curves in {q*, a*’) space, When
g@:* > 0 the congruence of {1.4) and (1,8} inGicates that such sclutions are identical with
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the solutions of system (1.4). The passage of the trajectory of system M* through the plane
¢,* = 0 ensures, by virtue of (1.7), that the conditions of impact (1.2} for system ¥ are
satisfied.

It can be shown that when ¢* <0, the values of y* defined by (1.8) are identical with
those that they take by virtue of (1.5), formulated for n*, and the generalized forces II*
have values determined by the power-balance equations.

n n
84 = 2 H,'&.Tli = 2 Hi*ém*
i=e1 i=1

From this follows the symmetry of the solutions of system {1.4) and (1.8) as expressed
by (1.7},

As an example we shall consider a heavy uniform sphere of unit mass, weight, and radius,
rolling without slip on an inclined plane Py, and colliding with an absolutely rough surface
P; perpendicular to Py, The plane P, in this formulation represents the non-retaining
constraint and the differential constraint of the first type, while the plane P, represents
the two differential constraints of the second type.

We introduce the inertial system of coordinates 0XYZ with semi-axes 0X and 0z in
planes P, and P; normal to the axis 0Oy directed along the line of intersection of P; and
P, so as to have a right-hand system of coordinates. As the Lagrange coordinates we take
Gi=z— 1, =y, 8 =286, =1, ¢=¢ » where gz y are the coordinates of the centre of the sphere
(z=1, and 8, ¢, ¢ are the Euler angles,

The kinetic energy T, the generalized forces Q, and the constraints imposed on the system
have the form

]

T o= by (g2 + g + Vd® {0l 07+ o) (1.9

Q= —cosa, Qo= —cosP, Gg=Ca=0U;=0

@20, =g —a =0, =g —op=0, =@ + o= 0

w; = B cosy + ¢ sinbsiny, ©,=6 sinp— ¢ sinBeosyp, =

@ cos 0§’
where cosa, cos B, cosy are the coordinates of the unit vector directed vertically upwards, ox
w;, ®, are the coordinates of the instantaneous angular velocity vector w, and a is the
radius of inertia of the sphere relative to its diameter. The constraints =0 and ¢ =10
g =10 are constraints of the first and second type, respectively.
The quasicoordinates =xn, in conformity with (1.3) and (1.6), have the form

M= T =y N =6=0, 0 =a=0
dy = 0T'/ogy = (4 + 2a%) ¢’ — ¥y’

The equations of motion for ¢ >0 have the form (l.4), where

. Myt a? (1 a) 77

i E e g 7t
Q2 at by
=G M="5m, D=7
Yo = = s = Ve = - Vs = Ve = Vo T TS g0
a* )
- Age = o Yao1 = o Yaa == - Vias S 7 T-' e
2 4 14 a?

it Rl ah - Sl e rE S e A ST

and the remaining non-holononic coefficients y are zero.
Egs. (1.8) that define trajectories of system M* have the form

* COS *

M == T D ¢1*, g =—cosB (1.10)
* cos f N .

o=~y snat, e =0, =0

Assuming that cose >0, ¢* (0)=0 and integrating system ({1.10), we obtain

g1*=~.2(ioi&aa)-z([z[-—r), — It (1.11)
G (=20 = @* (), N = Mt = A, —tcosP

. H . cos B 1A .
Mgl ==ty SEO QY= T ge + Ay sgn gy

. Ay = a%Ay sgn g* cos B
g = T Zat —T¥a

. A~ {1 +ef)desgng?t

W= gy, @y=g, W, = 1548

where the constants =, 4;, 4; are determined by the initial conditions. ) )
It follows from (1.11) that the trace of the sphere on the plane P, is a brok§n line
consisting of parabolic arcs, with ¢ and w, periodically changing, and the guantity
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takes in turn one of two constant values.

2. Let us consider the motion of a heavy axisymmetric solid above an absolutely rough
horizontal plane P. The condition of no-slip of the solid over the plane imposes on tljxe
system two differential constraints of the first type. The expressions for these obtained
in /7/ may be written as follows:

vy = fo, + fogsing, = fo, —eycos & 2.1)
where f=f(p) = GG is the distance from the centre of mass G to the plane P, measured at;. the
contact, o and p are respectively the longitude and polar distance of the axis of the solid
GZ' relative to the frame of reference Gesewe; ey ] P moving translationally (Fig. 1), and
Uy Uy Uy and g, oy, 0y are the projections of the velocity of the point G and of the instan-
taneous velocity of the solid on the directions of the vectors e, e, e,

We select the origin of the inertial system
of coordinates OXYZ in the plane P, and direct
£y z 0X | ey, OY |e;, OZ || e;. The Lagrange function 1
i and the superposed non-retaining and differential
constraints have the form

L=1m[a? = (g + JPP -+ 28] + 14 (072 2 ¢2sin?8) + (2.2)
Lol (g + ¢ cos 0P —mg (g2 + [}, cosPe=—sinBeosy
a=y—1H>0 ==z -+ \oz+-s~i%—a-wy cos @ (2.3}
€y =7~ fuiyx — msiﬁﬁ wysin@siny, ¢==cy=0 for g==0
ox = 8 cosy -~ " sin Bsiny, @y = 6 siny — " sin 8 cos§
Fig.l wz = 4 cos O "

where r,y,z are the coordinates of the peoint G,8,¢,¢ are the Euler angles, m and mg are
the mass and weight of the solid, and 2 and C are the equatorial and axial moments of inertia.
We determine the guasicoordinates @, in conformity with (1.3) and (1.6)

. . . aL
My =gy, Mz ==¢1, Mg ==0p Ty, 3,;=m (2.4}
where L’ is a function of L in which ',z are eliminated using relations (2.3).
The equations of motion may be written in the form (1.8). As can be shown, they have

particular solutions of the form

g = =Ygt (1] = 1) when—~T <t <7, * (t +27) = 25
@a* {0

=1 m*=0 ¢=a a,*=0 ¢ =Q =a/*=CQ

Ty * =0

that correspond to permanent rotations about the axis of symmetry situated vertically, for
periodic impacts with the constraining plane.

To a first approximation of the stability of the vertical orientation of the axis of the
solid we must assume that ¢*, ¢, n,;"* in the perturbed motion have the same form {2.5) /8/. The
characteristic equation for a system in variations of the quantities 6, P, MK, ngE, ¥, g ¥
may be composed, taking into account (2.4), the continuity of the quasivelocities A= 1,
co 6) on impact, and the relations

=0, 2 =0, A8 0Oy =0, Ay — 098" =0,
¢ =Q

which defines the motion of the solid in the intervals between the impacts on the plane.

That equation is reciprocal; using the change w ==1,(p < p™1) it can be reduced to the

form

¥ (o) = u? 4+ qu? =~ g + g, =0 (2.6}

dy == [ Uiy — (1 — Cg){i — ug), %y = -1+ 1":2 (1 - CO)X

(u)* + u,?)
do =11 (1 —chlu® — 1 — (1 — w,)*} — uys,
so == 8in C/4A QT
C mr i  TA

CGZCUSTQT' u1=m

where r = j({0) +— 7 {()

its axis.
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For solution (2.5) to be stable it is necessary for (2.6) to have three roots in the
interval [—1,1]. This is equivalent to the system of inequalities

l"12|\3 2la I —4a,,|a0~1¢a2[<1+a1 (
27q,2 — 18a,a;0. ,lmfl — % < 0

A dad 20l g2

o
~t
~—

g

m

Let us consider some special cases of the motion,
1°, ©Point G coincides with the centre of curvature of the surface on the axis of the
solid, i.e. r=f{0). Then u; = 0, and one of the roots (2.6) is unity and system (2.7) is
equivalent to two inequalities
1— o s

- 2
s 1 —L‘o\{\\m (2.8)
The analysis of conditions (2.8) shows that when A < C, they are satisfied for any T, Q.

I1f, however, 4 > (C (an elongated solid), then in the parameter plane T, 2 there are zones
lying near the curves

2
(1 — ug)?

CQTr = An (1 = 28) (W = 0, =1, =2, .. .)

that correspond to instability of the solutions (2.5). Note that similar motions in the case
of a smooth surface are stable /8, 9/.

Surt® are 2.

2°, In steady motion Q = 0. Then the characteristic equation (2.6) has the form

/i/L‘——i\/ i u* _12ﬁ0 * ___ mA’f"(O)TZ
WA T I T A

and the necessary condition of stability is
O u* 2 (2.4

Conditions (2.9) are somewhat less rigid compared with such conditions for motions of the
solid on a smooth surface /8, 9/.

3°, The velogity of rotation is large compared with that of vertical translations uyp <1
of the bedy. It can be shown that if inegualities (2.8) are satisfied in the strict sense for
some values of w, and cor then for fairly small u, (and fixed u, and ¢o) the inequalities
(2.7} are satisfied, and sclutions (2,5) are, to a first approximaticn, stable, However, it
appears that the maximum cf y; for which the stability is not violated, decreases to zerc as
co— 1.

Indeed, the guantity
2 {ug - 277 =
® - duy etg (M, CRTATY]

is negative for values of 31/,0074-' that are close to, but somewhat smaller, than an integer
multiple of =x. Hence it follows that the derivative y' (w) has a root greater than unity,
while in the case of stability all its roots necessarily belong to the interval /-1, 1/.

Let us compare this form of stability of solutions (2.5) when w, <€ 1 with the stability
condition of permanent rotation of a sclid permanently touching the supporting plane, that
has the form /10/

[C + mf{0) r1*Q = 47 (0) mg {4 + mf? [ {2.10)

Relation (2,10) is satisfied if Q is fairly large, and in case when [ {0) 0 for any &.

It follows from the above that the :ac:t:ar«n'i-xnn that it is hnccﬂ'ﬂa ro :nnaraf‘éb the solid from
i

the supporting plane for an arbitrarily small height, results, for speclflc values of Q,
destabilization of stable motions.

On +the other hand conditions (2 10) mav not be satrigfied hut +he
Cn the other nhand, conditions (£,.10) may not be satisiled, fut the

ensure stakility to a first approximation when u; 5= 0 is fairly small.
The author thanks A.P. Markeyev for his interest and for useful discussions.
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THE PROBLEM OF CONSTRUCTING A LYAPUNOV FUNCTION *

A.P. BLINOV

An algorithm which, for a wide class of problems, enables a Lyapunov
function with & negative-sign derivative to be reconstructed as a Lyapunov
functicn with a negative-definite derivative, is proposed. This algorithm

supplements the well-known method /1/ of reconstructing a Lyapunov function.
Examples are considered.

Consider a set of differential equations of perturbed motion

=L@ ) =02 =R L HsE0@Q), {lleQC R )

We will assume that for {1} Lyapunov's function 17, (7)., vhich is positive definite in the
domain Q and whose time-derivative is non-positive in this domain and vanishes in the manifold
M — Q by virtue of Egs. (l), is known.

We shall formulate the problem of determining the functions 1, (2) (v {n — 1) and the
constants u, >0, for which the sum

I
Vi{g)=TVe(x) - Si uelzr pin—1 2
=

{the quantity p is refined while soclving the problem} will be positive definite, and its time
derivative is, by virtue of (1), a negative~definite function in Q

Sew

We shall show that for the additional assumptions introduced below this problem has the
following solution.

Supposge the manifold M is described by the equations S, {x) =0,

o S i{z) =0, which are
ale in © with respect to certain m variables, for example

gjem i (g, oo x), T {=0, =14 ...m

We shall determine the functions /°® and @, (i, & = 1, .. .. n) using the equations

jic (a1 vy Ty) = fi ('Tlc (J“m-n« PRSI 2’7,), ey Ty (Im-l, e (3)
xn}a xm%h LR} xﬂ)
N3
Dy (25 Zmoty - s T = — § F @mors < o1 2) iy + Dy (%)
[

Here (U, is an arbitrary function of the coordinates Tm-1: « « +y Xy, in a number of which
the coordinate r, does not occur, and My, (0) =0. (When k> m + 1

i zy is omitted in the left-
hand side of (4)).
if che functions §, do not depend on 2.1, - . ., &y, we Will assume that f°= 0.
we shall determine the function ¥V, (») in the form of the sum
n
V*l (r) — }\Z ;‘.;_ﬁ.);; {J}
=

in which the constants Mt will be determined below,
We shall write the time-derivative of this functilon by virtue of (1)

. K c P, {x
17*11’1‘}2232{3}2% ).‘: !

g

. 1=s] =%
Since for im
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