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THE EQUATIONS OF MOTION OF A NON-HOLONOMIC SYSTEM WITH A 
NON-RETAINING CONSTRAINT* 

A.P. IVANOV 

The regularity of the equations of motion of a system with a perfect non- 
retaining constraint qXr, 0 and with differential constraints is demonstrated. 
As regards the latter it is assumed that they are imposed either on all 
motions of the system or only on those for which QI = 0. The effect of 
impacts on the stability of permanent rotation of a heavy solid about its 
axis of symmetry above an absolutely rough surface is investigated. It is 
shown that the stability of rotation of a solid on the surface can be 
destabilized by tearing away to an arbitary height, as small as desired. 

The possibility of deriving the equations of motion in regular form 
which defines the motion of a holonomic system with non-retaining constraint 
in an arbitrary time interval was showing earlier /l/. The advantages of 
this approach in comparison with the traditional method of "fitting" were 
demonstrated in 12-41. 

1‘ s uppose we are given a mechanical system M, defined in the configuration space qs 8" 

by generalized forces Q and the kinetic energy T, which is a quadratic form in q'. The motion 
of the system is restrained by a ncn-retaining constraint q, 1‘ 0 ‘ and by 1,~.< ti differentiable 
constraints of the form 

c~=niq’=cb a,=a,iq.l)ERn (i=i ,(.(, m) (1.1) 

We shall consider two types of differentiable constraints, assuming that only those mot;ons 
for which q, = 0, and for i -= ml __- 1. . . . . 1)~ allmotionsof system M, obey relations (1.1). 

If the coordinate 91 vanishes when t = t* an impact occurs cn the non-retaining 
constraint, as well as the differential constraints of the first type. According to Newton's 
hypothesis that impact (considered absoluteiy elastic) can be definedbythe relations 

q; (t* - 0) = -ql’ (t* - Cr), CJ (t* f 0) = - cj (1* - 0) (12) 
(j =y 1. . I. m,) 

We describe the motion free of impacts by the Boltzmann-Hamel Eqs./5/. If the quasico- 
ordinates x are define d by a reversible substitution 

xZ'=I,q' 3 -T,.-m.j =CJ$ I, (q. I} 5 N” i.3] 
(i=L... .n---m;j=l....,m) 

these equations have in region qI > 0 the iora 

(1.i) 

where the kinetic energy T is set up taking relations (1.3) into account, fi, is the generalized 
force corresponding to the quasicoordinate 1, and the coefficients of non-holonomy y are 
determined from the permutational relations 



where E is the unit matrix of ctrder 8-m- 

Far matrix B we obt3in 

Proof of the tieorem, By the lem~18~ the kinetic enewqy ir* decomposes into the sum of 
two quadratic forms, each of which corresponds to a daEinitcJ value af vtS calculated fox 
the indices af the variables appearing in it. 
T* r 

Hence i&e factors sgnq%* will not appear in 
an4 system (3.8) wi.Ll. not conraln singularitiesa af the delta-&anction type. Consequently, 

the sofutitsns of this system are repxer;Etnted by continuaus cu-ves in (@,A*') space. Wtaen 
pi* 20 the Congruence Of ii.rit and (I,81 indicates th& such solutions are identical with 
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the solutions of system (1.4). The passage of the trajectory of system M* through the plane 
ql* = 0 ensures, by virtue of (1.7), that the conditions of impact (1.2) for system M are 
satisfied * 

It can be shown that when u,* (0, the values of Y* defined bv (1.8) are identical with 
those that they take by virtue of (1151, formulated for x*, and the generalized 
have values determined by the power-balance equations. 

forces II* 

i=l i=1 

From this follows the symmetry of the solutions of system (1.4) and (1.8) as 
by (1.71. 

expressed 

As an example we shall consider a heavy uniform sphere of unit mass, weight, and radius, 
rolling without slip on an inclined plane PI, and colliding with an absolutely rough surface 
PP perpendicular to PI. The plane P, in this formulation represents the non-retaining 
constraint and the differential constraint of the first type, while the plane P, represents 
the two differential constraints of the second type. 

We introduce the inertial system of coordinates OXYZ with semi-axes OX and 02 in 
planes P1 and Ps normal to the axis OY directed along the line of intersection of P, and 
p, so as to have a right-hand system of coordinates, AS the Lagrange coordinates we take 
q1 = 2 - f, 9% = Y, 43 = 8, 94 = $3 4s = cp ’ where 5, J are the coordinates of the centre of the sphere 
(ZSI), and 8,1$,'p are the Euler angles. 

The kinetic energy !r, the generalized forces Q, and the constraints imposed on the system 
have the form 

where CO~CL. cosfi, cosy are the coordinates of the unit vector directed vertically upwards, ox 

WJ., Or are the coordinates of the instantaneous angular velocity vector O, and a is the 
radius of inertia of the sphere relative to its diameter. The constraints cI= 0 and c* = ii 
CQ = 0 are constraints of the first and second type, respectively. 

The quasicoordinates 11, in conformity with (1.3) and (1.61, have the form 

Xl = ,J*, x3' = (',, $I,' = C* az 0: ZB' = Cq S U 
n*’ = c?T’/dq,’ =i (1 + 202) y*’ - a2x3. 

The equations of motion for ql>O have the form (1.41, where 

2T = (i +a')X1'S + na'?+ ;3~-+*~C'&* 

ti:! 
ri,=ii*.&=~ > 

9 a? {>, 
I&= Il_Za' \a 

--f 

- ';I22 = + y*?l = - YY31 = .; ;'I33 = 1 
a* 1$-o? 

- 7'123 = + i'31= , _ PaI , - :'%I = f 7153 = f 

and the remaining non-holcnomic coefficients y are zero. 
Eqs,(l..8) that define trajectories of system M* have the form 

* COS? '4 
.7, =- IS&" (II*, lTn- n* = - COB p (1. l(l) 

l cosg 
n3 =-~Sgny,', .X&; =o, ns' =o 

Assuming that COB= > 0, (II* (0) = 0 and integrating system (1.101, we obtain 

ql” = - * t(ff f--T), --7<t<2 (f.11) 

ql* (1 - 2?) = ql’ (t), %’ = 3Iz” = Al - 103s B 
; COP p 

113’ = 13 sgn q,*= - , + (I? -----~+~*sLTnql* 

4%’ ZE 
Ai - &4~ sgn q,* 03s p, 

1 + 2a* -ija"t 

WX = - gz', oy = B>'> 
.4,- (1 +a*).‘i,Sgnql* 

w* = i-+20" 

wherethe constants T,A,,A$ are determined by the initial conditions. 
It follows from (1.U) that the trace of the sphere on the Plane PI is a broken line 

consisting of parabolic arcs, with q, and c,+, periodically changing, and the quantity 01 



takes in turn one of tW0 

2. Let us consider 
horizontal plane P. The _ 

constant values. 

the motion of a heavy axisymmetric solid above an absolutely rough 
condition of no-slip of the solid over the plane imposes on the 

system two differential constraints of the first type. The expressions for these obtalned 

in /7/ may be written as foZ10ws: 
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v1 = fat + f'w,sin cL, v, = fwl - f’0$ cos a (a.11 

where f=f(@)=(%' is the distance from the centre of mass G to the plane P, measured at the 
contact, ct and 6 are respectively the longitude and polar distance of the axis of the solid 

GZ’ relative to the frame of reference &,e,e,, e3,J_ P moving translationally (Fig. 11, and 

L' 1% V?. US and ol. wp. wQ are the projections of the velocity of the point G and of the instan- 
taneousvelocityof the solid on the directions of the vectors e,,e,,e,. 

We select the origin of the inertial system 
of coordinates OXYZ in the plane P, and direct 
OX /j et. UY jl e3, 02 [I e,. The Lagrange function L 
and the superposed non-retaining and differential 
constraints have the form 

L=x;em [r*' 1w ((i< _C f'fi')z .+ ;'z] + r,!z..$ (6'2 + q'?sin?B) i_ (2.2) 
r:&(v' -+ +$'tot;6)'---m~ fqz f f), ros/3= - sin 8ccisJ; 

Ql= 1/-- i(P)> 0, Cl = 5' + f&* f-z- Qy COSB 
i' 

s1n p (Z.3) 

C" = 3' - ,f\,,.Y - -+.-.- 
S1" p bier sin fl sin I#, cr=c?=O for ql==O 

WI = 0’ ros 3 4 t'oin 8 sill y, wy = fl' sin I$ - 11" sjn 6 ros% 
Fig.1 02 = v' cos e -+ $' 

where m,y,z are the coordinates of the point G, R,$, y are the Euler angles, m and mg are 
the mass and weight of the solid, and A and C are the equatorial and axial moments of inertia. 

We determine the quasicoordinates ;zI in conformity with (1.3) and (1.6) 

where Li' is a function of L in which m',z' are eliminated using relations (2.3). 
The equations of motion may be written in the form (1.8). As can be shown, they have 

particular solutions of the form 

91 C- - --':&t (i 1 I - T) when--T < t < T, &* (t + 2T) = 

g1* (t) 
0 = 1:*x, Jr;" = 0, 3 = zr, xa'" = 0, q' = 0, Jsp'* = co, 

%,6 '* Z 0 

that correspond to permanent rotations about the axis of sy;n;netry situated 
periodic impacts with the constraining plane. 

To a first approximation of the stability of the vertical orientation 

(2.5) 

vertically, for 

of the axis of the 
solid we must assume that ql*, tf, n,'* rn the perturbed motion have the same form (2.5) /8/. The 
characteristic equation for a system in variations of the quantities 
may be composed, taking into account (2.41, 

B,$, s;*, na'*, n5'*, II,'* 

. . .( 6) on impact, and the relations 
the continuity of the quasivelocities xi'* (i = 1, 

J.' z 0, z" = 0, A@" -+ CO$. = 0, A$" - toe* = 0, 
'(' = R 

which defines the motion of the solid inthe intervals between the impacts on the plane. 
That equation is reciprocal; using the change U: = 1 ?(p -& p-l) it can be reduced to the 

form 

(2.6) 

where i’ z j (0) T J’(c)) is !AiZ rhdftis cf s';rvar,ire 
its axis. 

cf the surface of the solid at the point of 
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For solution (2.5) to be stable it is necessary fox (2.6) to have three roots in the 
interval I-1,11. This is equivalent to the system of inequalities 

I a2 I3, 2 I ag I < 3 -I- Q,, I a0 -I- a, I < f + a, 
2?ao2 - 18a,a,n? + 4a,a: - 4af - a12az2 < 0 

(2.5) 

Let us consider some special cases of the motion, 
lo * Point G coincides with the centre of curvature of the surface on the axis of the 

solid, i.e. r = ! (0). Then u1 = 0, and one of the roots (2.6) is unity and system (2.7j is 
equivalent to two inequalities 

The analysis of conditions (2.8) shows that when A <c, they are satisfied for any T, Iz. 
If, however, A > C (an elongated solid), then in the parameter plane T, Q there are zones 
lying near the curves 

that correspond to instability of the solutions (2.5). Note that similar motions in the case 
of a smooth surface are stable /S, 91. 

20 . In steady motion n = 0. Then the characteristic equation (2.6) has the form 

and the necessary condition of stability is 

U < u* < 2 (17.i1) 

Conditions (2.9) are somewhat less rigid compared with such conditions for motions of the 
solid on a smooth surface /8, 9,'. 

30 . The velocity of rotation is large compared with that of vertical translations ul< 1 
of the body. It can be shown that if inequalities (2.8) are satisfied in the strict sense for 
some values of u? and Cl, 1 then for fairly small al (and fixed uI and c,) the inequalities 
(2.7) are satisfied, and solutions (2.5) are, to a first approximation, stable. However, it 
appears that the maximum of a1 for which the stability is not violated, decreases to zerc as 
c,-+l. 

Indeed, the quantity 

x‘ (I) = 2u,s, + '_* (1 - C"! [u,2 $ (us - 2)'] = 
I/* (1 - co) [IQ 7 (z+ - 2,' --- 4u, clg (A/* cnTA-'JJ 

is negative for values of V,C!!TA-1 that are close to, but somewhat smaller, than an integer 
multiple of n. Hence it follows that the derivative x'(c) has a root greater than unity, 
while in the case of stability all its roots necessarily belong to the interSa /-1, l/. 

Let us compare this form of stability of solutions (2.5! when ul< 1 with the stability 
condition of permanent rotation of a solid permanently touching the supporting plane, that 
has the form /lOi 

IC i ml (0) r1%? > 4j" (0) ,nR[‘4 ‘7 frzf? ((I)1 (2.10) 

Relation (2.101 is satisfied if Q is fairly large, and in case when f"(U)< U for any $1 
It follows from the above that the assumption that it is possible toseparate the solid from 
the supporting plane for an arbitrarily small height, results, for specific values of ii, in 
destabilization of stable motions. 

On the other hand, conditions (2.10) may not be satisfied, but the inequalities (2.8) 
ensure stability to a first approximation when ui#U is fairly small. 

The auth0rthanksA.P. Markeyev for his interest and for useful discussions. 
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A.IP. BLINOV 

An algorithm which, for a wide class of problems, enables a Lyapunov 
function with a negative-sign derivative to be reconstructed as a Lyapunov 
function with a negative-definite derivative, is proposed. This algorithm 
supplements the well-known method /l/ of reconstructing a Lyapunov function, 
Examples are considered. 

Consider a set of differential equations of pertuxbed motion 

xi- = li (*f7 f (8) = 0. 5 E fin, I; (r) E C' (Q), (0) E B c 8" (3) 

We will assume that for (1) Lyapunov's function I‘, fx),which is positive definite in the 
domain 0 and whose time-derivative is non-positive in this domain and vanishes in the manifold 
Al c R by virtue of Eqs.(1), is known. 

We shall formulate the problem of determining the functions I-,.(X) (13 < 12 - 1) and the 
constants pT > 0, for which the sum 

(the quantity p is refined while solving the problem] will be positive definite, and its time 
derivative is, by virtue of (l), a negative-definite function in Q. 

We shall show that fox the additional assumptions introduced below this problem has the 
following solution. 

Suppose the manifold M is described by the equations S1 (zr) = 0, . . St s,(s) = 0. which are 
-_ .e In 0 with respect to certain m variables, for example 

"f t Tj" (.&I. . . *. x-*n), ZJO (of = 0, j = f, . . ~~ m 

We shall determine the functions fro and Oh- (i, k = 1, . . I. R) using the equations 

!," (&,,,l. . . I, Jn) = fi (*ZIG (x,,+1. - . ., &J, I * ‘1 crmo (2&l, . I” (3) 
G&f, a&l, * . ., r,) 

a>&. fr;;, x,+1, . . . 9 +-j$i’ir,_,... t SJ dt, f Eator (41 

Here @0k is an arbitrary function of the coordinates in a number of which 
the coordinate xk does not occur, and CD,, (U)= 0. 

XI?,-1. I I .I x,, 
(Whan k> ?n + 1 

hand side of (4)). 
xy is omitted in the left- 

if ti:e functions fi do not depend on X,-I, .._, z,,, we will assume that ji"s ct. 
CE shall detersmine the function ITa (2) in the form of the sum 

in which the constants h;r will be determined below. 
We shall write the time-derivative of this function by virtue of (1) 

Since for i & ~3 
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